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1. Summary
Sperm traverse their microenvironment through viscous fluid
by propagating flagellar waves; the waveform emerges as
a consequence of elastic structure, internal active moments
and low Reynolds number fluid dynamics. Engineered
microchannels have recently been proposed as a method
of sorting and manipulating motile cells; the interaction of
cells with these artificial environments therefore warrants
investigation. A numerical method is presented for large-
amplitude elastohydrodynamic interaction of active swimmers
with domain features. This method is employed to examine
hydrodynamic scattering by a model microchannel backstep
feature. Scattering is shown to depend on backstep height and the
relative strength of viscous and elastic forces in the flagellum. In a
‘high viscosity’ parameter regime corresponding to human sperm
in cervical mucus analogue, this hydrodynamic contribution to
scattering is comparable in magnitude to recent data on contact
effects, being of the order of 5◦–10◦. Scattering can be positive or
negative depending on the relative strength of viscous and elastic
effects, emphasizing the importance of viscosity on the interaction
of sperm with their microenvironment. The modulation of
scattering angle by viscosity is associated with variations
in flagellar asymmetry induced by the elastohydrodynamic
interaction with the boundary feature.

2. Introduction
Human sperm propel themselves by propagating a travelling
wave along a single, active flagellum; this motility is essential

2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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for migration through the female reproductive tract and natural fertilization. Recent work with
microfluidic devices [1,2] has suggested the ability to direct and sort cells through their own motility,
a potentially valuable advance in assisted reproduction therapy and in the livestock industry. Cell
scattering at simple geometric features, such as the outside of a corner, appear to be dependent on
viscosity and temperature; developing mechanical models to understand, interpret and optimize these
effects for their exploitation is therefore of considerable interest. We will develop a mathematical model
of a cell interacting with its environment, and its computational implementation, and study the dynamics
of a realistic model sperm swimming over a backstep feature to study the effect of elastic, viscous and
geometric parameters. The model will combine geometric nonlinearity of the elastic flagellum with non-
local hydrodynamic interactions, and will be solved numerically via an implicit finite difference method
for the elastohydrodynamic equations, combined with a hybrid slender body theory/boundary integral
method for the low Reynolds number fluid dynamics.

The motor apparatus driving the flagellar waveform is a remarkably phylogenetically conserved
structure known as the axoneme. The axoneme in human sperm comprises nine doublet microtubules,
linked to each other and a central pair by passive elastic structures, with additional stiffening from
outer dense fibres and the fibrous sheath (for a recent review focused on mechanically relevant features,
see [3]). Motor proteins bound to the microtubules exert forces on adjacent doublets in a coordinated
manner to induce bending moments along the length of the flagellum, causing bending, which is in turn
resisted by the surrounding fluid. The fluid mediates interactions with surrounding surfaces and other
cells; the flagellar waveform emerges from this nonlinear coupling.

Machin [4] showed that in order to generate experimentally observed waveforms the flagellum must
actively bend along its length, and developed a linearized theory that has formed the basis of many
subsequent studies. The theory that bending is produced by relative sliding of internal microtubules
was subsequently proposed by Satir [5], and the sliding mechanism was modelled in early studies by
Brokaw [6,7], using the formalism of an active internal moment per unit length in an elastic filament.
The regulation of the active motor proteins that cause this sliding, and their oscillatory behaviour, is
however a subject of continuing enquiry [8–10], with modelling playing an important role in comparing
regulatory theories [11]. A number of studies since the 1970s have provided significant insights into how
potential mechanisms of dynein regulation can produce the types of bending waves observed in nature
(e.g. [8,12–15]).

The importance of large-amplitude elastohydrodynamic flagellar modelling was established by
Gadêlha et al. [16], who delineated the range of validity of small-amplitude elastic theory and showed
that for sufficiently high viscosity relative to flagellar stiffness, a buckling instability can give rise to
waveform asymmetry without domain boundaries or asymmetric internal actuation. The numerical
implementation of Gadêlha et al.’s study built on a model of passive flexible fibres in shear flow [17],
although replacing the non-local hydrodynamics of the latter with a local drag-velocity law. The
combination of three-dimensional, time-dependent flow, with the hydrodynamic interactions arising
from fixed and moving boundaries, with active filament mechanics is computationally demanding; the
majority of sperm models until the last decade made similar approximations for the fluid dynamics, or
small-amplitude linearization of the flagellar wave.

Liron, Gueron and colleagues (e.g. [18,19]) modelled cilia arrays, taking both non-local fluid dynamics
and geometric nonlinearity into account, building on earlier work by for example Lighthill [20] and
Hines & Blum [13]. However this formalism, expressed in terms of bending angles rather than flagellar
position, does not appear to have been generalized to a free-swimming cell with the associated boundary
condition resulting from the presence of a head. More recent work using the finite-element and
finite-volume methods and cluster computing has also been focused on cilia [21]; another successful
recent approach is the regularized stokeslet method combined with a generalized immersed boundary
method [22].

While the fluid dynamic interaction of sperm with plane boundaries has received significant attention
since the work of Rothschild over 50 years ago [23], motivating a number of experimental and theoretical
studies [24–27], the interaction of sperm with ‘non-trivial’ geometric obstacles involving angles and
curves or complex interfaces is a subject of growing recent interest [28–31].

Denissenko et al. [1] showed how sperm scatter at a range of angles when encountering the outside
of a corner in an artificial microchannel maze, and that the scattering angle is modulated by viscosity;
Kantsler et al. [2] studied the effect of very close interactions of sperm and the biflagellate algae
Chlamydomonas with these features. The geometric nature of the female reproductive tract is also
highly convoluted, further motivating the need for models which can accommodate complex wall
shapes. These studies suggest tantalizing opportunities to direct and sort motile sperm on passive
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microdevices, however a better understanding of the subtle nonlinear physics of how flagellated
swimmers interact with geometric features must be developed; to aid with this understanding we will
develop a mathematical and computational approach which accounts for elasticity, viscosity and their
interaction, without the need for large-scale computational resources. To this end, we will bring together
the active elastic formulation of Gadêlha et al. [16] with the Lighthill–Gueron–Liron (LGL) theorem [18]
for non-local slender body theory and the boundary element [32] and regularized stokeslet methods
[33,34] to capture the influence of a non-trivial nearby surface. We will use this approach to explore how
sperm scatter near geometric features due to elastohydrodynamic interaction over hundreds of flagellar
beats with a single computer core, and quantify how the balance of viscosity and elasticity modulates
this effect via changes to the flagellar waveform.

3. Mathematical model
The mathematical model of a sperm interacting with a geometric feature will be derived from (i) the
Stokes flow equations, with a non-local hydrodynamic model, and (ii) geometrically nonlinear elasticity
for an internally actuated flagellum. We will first derive the equations for the two parts of problem,
before describing (iii) the numerical implementation.

3.1. Hydrodynamics
At microscopic scales, fluid dynamics can be modelled by the incompressible Stokes flow equations

0 = −Vp + μ∇2u, V · u = 0, (3.1)

where u is velocity, p is pressure and μ is dynamic viscosity. For our problem, these equations will
be augmented with the no-slip, no-penetration condition u(X) = Xt for points X on the solid boundary,
where subscript t denotes time derivative.

The linearity of the Stokes flow equations enables the construction of solutions to satisfy
boundary conditions via discrete and/or continuous sums of suitably-weighted fundamental solutions.
These techniques replace solid surfaces, such as the sperm flagellum, head and its surrounding
microenvironment, by line or surface distributions of immersed forces. A concentrated point force
located at y with strength F produces a velocity field (the ‘stokeslet’),

uj(x) = Sjk(x, y)Fk, where Sjk(x, y) = 1
8πμ

(
δjk

|x − y| + (xj − yj)(xk − yk)

|x − y|3
)

, (3.2)

the symbol δjk being the Kronecker delta tensor and the summation convention being used. The symbol
S(x, y) will be used to denote the second rank tensor in equation (3.2). It will also be convenient to make
use of the regularized stokeslet Sε of Cortez [35], which corresponds to a spatially smoothed force; a
frequently used implementation in three dimensions [33] takes the form

Sε
jk(x, y) = 1

8πμ

δjk(|x − y|2 + 2ε2) + (xj − yj)(xk − yk)

(|x − y|2 + ε2)3/2 . (3.3)

The parameter ε > 0 defines the length scale over which the point force is smoothed; this smoothness
property is particularly convenient for the formulation of boundary integral methods.

The LGL theorem [19], an extension of the work of Lighthill [20], derives from a line distribution of
singular stokeslets and source dipoles: an approximate expression for the flow field at the surface of a
moving slender body, accurate to O(

√
b/L), where b is the radius and L is the flagellar length. Ignoring

image systems, which are not required in our formulation, and using the properties of the stokeslet to
reorder the source and field points, we have the expression for the approximate velocity field produced
by the slender body v,

v(X(s0, t)) = − 1
ξ‖

(fvis · ŝ)ŝ − 1
ξ⊥

(fvis · n̂)n̂ − 1
ξ⊥

(fvis · b̂)b̂

−
∫
|s−s0|>q

S(X(s0, t), X(s, t)) · fvis(s, t) ds. (3.4)

Here and in what follows, 0 ≤ s ≤ L is an arclength parametrization for the flagellum, and fvis is the
viscous force per unit length exerted by the fluid on the flagellum. The coefficients ξ‖ and ξ⊥ are parallel
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and perpendicular resistance coefficients similar to those of Gray & Hancock [36] and take the form

ξ⊥ = 8πμ

1 + 2 ln(2q/b)
, ξ‖ = 8πμ

−2 + 4 ln(2q/b)
and γ = ξ⊥

ξ‖
, (3.5)

the parameter q being a length scale chosen intermediate in magnitude between b and L. The symbols
ŝ, n̂ and b̂ are unit tangent, normal and binormal. Whereas Gueron and Liron [18,19] considered the
dynamics of a cilium projecting from a plane boundary, and hence the associated image systems, in this
study we will not require these terms because surfaces will be represented via boundary integrals.

Equation (3.4) can be considered a non-local extension of resistive force theories, which retain only
the first three terms. To couple LGL to the elastohydrodynamic model of Gadêlha et al. [16], we will
rewrite these terms in another commonly used form, −(1/ξ⊥)(I + (γ − 1)ŝŝ) · fvis, with γ = ξ⊥/ξ‖ playing
a similar role to the drag anisotropy ratio of resistive force theory, but depending on the choice of q. The
precise value of q is not critical provided that b � q � L because changes to the resistance coefficients are
accompanied by changes to the integrals; for our study with b = 0.01L, we choose q = 0.1L, leading to
γ ≈ 1.4.

To model a sperm, we will consider a cell with a rigid head as well as a flagellum, swimming near
a rigid step-like surface. The linearity of the Stokes flow equations means that a solution satisfying the
additional no-slip boundary conditions associated with the head and the wall may be constructed by
linear superposition. Moreover, the Lorentz reciprocal relation and its regularized analogue [33] enable
the representation of these surfaces by boundary integrals; rigidity of the surfaces enables the use of
single layer boundary integral representations [37, p. 32]. In this study, we will use a hybrid approach,
representing the head via a surface distribution of singular stokeslets with stress φH, discretized via
BEMLIB [32], and the wall by regularized stokeslets and boundary elements, with stress φW [33,34]. The
full fluid dynamic model for the velocity field on the surface of the flagellum is therefore

u(X(s0, t)) = − 1
ξ⊥

(I + (γ − 1)ŝŝ) · fvis −
∫
|s−s0|>q

S(X(s0, t), X(s, t)) · fvis(s, t) ds

−
∫∫

H(t)
S(X(s0, t), y) · φH(y, t) dSy −

∫∫
W

Sε(y, X(s0, t)) · φW(y, t) dSy. (3.6)

Similar equations, but with the first two terms replaced by a single slender body integral − ∫L
0 S · fvis ds,

hold on the surface of the head and the wall. In the next section, we will discuss the equations of an
internally driven elastic flagellum, and their coupling to the fluid mechanics.

3.2. Elastohydrodynamics
The elastohydrodynamic formulation we will work with was derived by Tornberg & Shelley [17], and
extended to an internally driven flagellum by Gadêlha et al. [16]; the central feature of this approach
is to formulate the problem in terms of the flagellar position X(s, t) and line tension T(s, t). Alternative
approaches based on bending angles and curvatures [38,39] have also been pursued, as has complex
curvature [40]. The internal elastic contact force Fint and moment Mint exerted on the proximal flagellum
[0, s0) by the distal flagellum (s0, L), respectively, are given by

Fint = −EXsss + mn̂ + TXs and Mint ∧ Xs = EXss, (3.7)

where E is constant elastic modulus and m(s, t) is a prescribed active moment density representing the
internal flagellar motors. Balancing elastic and viscous forces acting on a segment of flagellum (s0, s0 + δs)
and taking the limit as δs → 0 yields

fvis + ∂s(−EXsss + mn̂ + TXs) = 0. (3.8)

Noting that ŝ = Xs, the local term of equation (3.6) can then be written as

− 1
ξ⊥

(I + (γ − 1)ŝŝ) · fvis = −E(Xssss + (γ − 1)(Xs · Xssss)Xs) + TXss + γ TsXs

+ msn̂ + γ mn̂s. (3.9)

For brevity, we will write the non-local (integral) velocities from equation (3.6) as V (written out
explicitly in the appendix, equation (A 2)). Non-dimensionalizing with scales L for position, 1/ω for
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time, ωL for velocity and E/L2 for tension and moment density yields the following dimensionless
elastohydrodynamic equation:

Sp4(Xt − V) = −Xssss − (γ − 1)(Xs · Xssss)Xs + TXss + γ TsXs + msn̂ + γ mn̂s. (3.10)

The parameter Sp = L(ξ⊥ω/E)1/4 is the sperm number, which quantifies the relative importance of viscous
and elastic effects. This model can be seen as an extension of linear models (such as Camalet et al. [14]) by
the inclusion of the nonlinear terms on the right-hand side, and an extension of hydrodynamically local
models (such as Gadêlha et al. [16]) by the inclusion of the V term on the left-hand side.

Similar to Gadêlha et al. [16], the inextensibility constraint ∂t(Xs · Xs) = 0 can be used with the
elastohydrodynamic equation (3.10) to deduce an ordinary differential equation which must be satisfied
by the line tension T,

−Sp4Vs · Xs = γ Tss − Xss · XssT + 3γ Xsss · Xsss + (1 + 3γ )Xss · Xssss

+ (γ + 1)msn̂s · Xs + mn̂ss · Xs. (3.11)

The above equation is derived via the identity 3Xss · Xsss + Xs · Xssss = 0 and its derivative with respect to
s. As previously [16,17], we introduce the term λSp4(1 − Xs · Xs) to the left-hand side of equation (3.11)
to dampen numerical errors in flagellar length. The value used in this study is λ = 80, though as found
by Gadêlha et al. the solution is insensitive to the precise value of λ.

The final part of the mathematical model is the specification of the boundary conditions for
equations (3.10) and (3.11). The assumption of zero contact force and moment at the distal (s = 1) tip
of the flagellum combined with the elasticity equations (3.7) yield (in dimensionless variables)

0 = −Xsss + mn̂ + TXs and 0 = Xss at s = 1. (3.12)

Taking the dot product of the first equation with Xs, using the identity Xs · Xsss = −Xss · Xss and the second
equation yields the distal tension boundary condition, T = 0.

At the proximal end of the flagellum, the boundary conditions are given by considering the force and
moment exerted by the fluid on the head. We denote these quantities FH and MH and non-dimensionalize
them with the elastic scalings E/L2 and E/L, respectively. In the inertialess Stokes flow regime, the total
force and moment acting on the head are zero, so by Newton’s third law, the force and moment on the
flagellum at s = 0 are also given by FH and MH, respectively. With the appropriate scalings, the proximal
boundary conditions are then

FH = Xsss − mn̂ − TXs and MH ∧ Xs = −Xss + Mn̂, at s = 0, (3.13)

where M = ∫1
0 m ds. From these equations, we also derive the tension condition at the proximal end,

FH · Xs = −Xss · Xss − T. The calculation of the quantities FH and MH with non-local hydrodynamic
interaction is described in more detail in the next section and the appendix. Finally, we introduce the
translational and angular velocity UH and ΩH of the head; while UH and two components of the angular
velocity are constrained by knowledge of the function X, there is an independent rotational component of
the motion that defines the principal bending plane of the flagellum. These quantities will be determined
by kinematic considerations and the implementation of the boundary conditions.

To complete the mathematical model, it is necessary to specify the internal active moment m(s, t).
Gadêlha et al. [16] used travelling waves of internal moment, which calculations from experiment [3]
confirm are a good model. We therefore specify in dimensionless units, m(s, t) = m0 cos(ks − t).

3.3. Numerical implementation
The elastohydrodynamic equation (3.10) is treated with a Crank–Nicolson-type finite difference
discretization, with the second-order central differences in the interior, and third-order one-sided
difference for the boundary conditions, using coefficients taken from Fornberg [41]. The higher order
boundary stencil produced comparable errors to the central stencil on polynomial test functions. Both
linear and nonlinear terms are treated implicitly; nonlinearity of these equations is dealt with by
performing an iterative process on every time step, with the operator on the left-hand side at t + dt
being linearized as

− Xssss − (γ − 1)(X̃s · Xssss)X̃s + TX̃ss + γ TsX̃s + fsñ + γ f ñs, (3.14)

variables with tildes denoting that values from the previous iteration are taken.
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The non-local hydrodynamic term V in equation (3.10) is approximated by forming the slender

body/boundary integral problem of determining fvis, φH and φW using the most recent approximations
to X̃ and X̃t available; details are given in the appendix.

At the first iteration of each time step, the converged values from the previous time step are used
as starting guesses for all variables, except for X which is approximated via linear extrapolation. The
nonlinear iteration is terminated when the maximum difference in position between successive iterations
relative to the distance travelled by the flagellum over the time step falls below 0.5%. Similarly, the
auxiliary equation for the tension at t + dt is linearized as

Sp4(λ(1 − X̃s · Xs) − Ṽs · X̃s) = γ Tss − (X̃ss · X̃ss)T + 3γ X̃sss · Xsss

+ (1 + 3γ )X̃ss · Xssss + (γ + 1)(ñs · X̃s)ms

+ (ñss · X̃s)m. (3.15)

Each iteration requires the solution of a linear system for the unknown discrete values of X(sl, tn+1),
T(sl, tn+1), UH and ΩH, where l = 0, . . . , Ns denotes the spatial grid coordinate and n = 0, 1, . . . the time
step. We found that Ns = 160 and 200 time steps per beat were sufficient to yield accurate results. The
discrete form of equations (3.10) and (3.11) provide 4(Ns + 1) + 6 = 650 linear equations, the additional
six equations arising from the translational and angular velocity of the cell head. The nonlinear correction
is then a system of 3(Ns + Nh + Nb) linear equations, where Nh and Nb are the number of elements on
the head and domain boundary, respectively.

To implement the boundary conditions (3.12) and (3.13), the force and moment on the head are a
priori unknown and need to be determined as part of the coupled problem. The force and moment are
decomposed into a linear part, given by the grand resistance matrix associated with rigid body motion
in the vicinity of the wall, and an additional subleading correction resulting from the influence of the
flagellum. Following non-dimensionalization with the elasticity scalings, the force and moment on the
head may then be expressed as(

FH

MH

)
= Sp4

(
μ

ξ⊥

)
R ·

(
UH

ΩH

)
+
(


FH


MH

)
, (3.16)

where 
FH, 
MH are corrections for the effect of the flagellum. The calculations of R and the corrections
are described in the appendix.

In summary, each time step requires a number of iterations to solve the nonlinear problem
and each iteration involves the solution of a sparse linear system arising from the finite difference
discretization of the elastohydrodynamic equations. The ‘right-hand side’ terms arising from the non-
local hydrodynamic correction V and the non-local corrections to the force and moment balance

FH, 
ΩH require the solution of a slender body theory–boundary integral hydrodynamic problem.
Calculation of the grand resistance matrix R requires the separate solution of a boundary integral
problem with multiple right-hand sides to determine the force and moment resistances associated with
the rigid body modes of the head and the wall interaction. The code is implemented in Fortran 90
(gfortran, GNU Compiler Collection); linear systems are equilibriated and solved by LU factorization
with the LAPACK routines dgeequ and dgesv, respectively, and the boundary integrals over the
sperm head are calculated with routines from BEMLIB [32]. A typical run of 200 beats with 500
boundary elements required approximately 24 h walltime on a single core of a 2.2 GHz Intel Sandy Bridge
E5-2660 node.

4. Results
The numerical scheme is applied to predict the trajectory of a sperm-like cell swimming in an unbounded
fluid at varying Sp, over a ‘backstep’ (the latter being shown in figure 1a), the limiting case of zero
backstep height being referred to as a ‘strip’. As in Gadêlha et al. [16], we consider planar waveform
actuation, which is appropriate for cells swimming through high viscosity fluids such as cervical mucus
[42]. The semi-axes of the ellipsoidal head, modelled with the boundary element method, are ax = 0.05L,
ay = 0.03L, az = 0.04L, which correspond to a 5 × 3 × 4 µm head for a flagellum of length L = 50 µm. The
swimmer is initially at rest, with a straight flagellum, and a ‘soft start’ is applied whereby the internal
shear moment is initially low and smoothly increases to its maximum, reaching 99% after five beats. The
sperm number of a human gamete can be approximated by using bending stiffness E ≈ 5 × 10−21 Nm2,
beat frequency 10–20 Hz giving an angular frequency ω ≈ 100 rad s−1 [3]. Taking a flagellar radius of
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Sp = 13

(a)

(b)

Sp = 15 Sp = 17

Figure 1. Example results from non-local elastohydrodynamic simulation. (a) Plot of the problem domain, including the boundary
element meshes for the wall and swimmer, and a plot of the trajectory, computed at Sp= 13. (b) Waveforms in infinite fluid of flagella
driven by the same internal force at different sperm numbers. The effect of increasing sperm number is to reduce cell yaw and bending
in the proximal end of the flagellum, as is observed in the waveform of sperm in high viscosity medium [42].

0.5 µm, viscosity μ ≈ 0.14 Pa · s (similar to mucus analogue [42]) yields the normal resistance coefficient
ξ⊥ ≈ 0.503 and sperm number Sp ≈ 15.8. Therefore, we will consider a range of sperm numbers between
13 and 17, fixing the magnitude of the internally generated shear-force m0 = 240 and wavenumber k =
6π . The resulting waveforms are shown in figure 1a. As sperm number increases, beat amplitude is
suppressed, as is observed for sperm in high viscosity medium [42], leading to a reduction in side-to-side
yaw. All simulations in infinite fluid, i.e. with no nearby boundaries, produced trajectories which were
straight overall, once the within-beat yaw was accounted for (data submitted to Dryad repository [43]);
flagellar waveforms for Sp = 13, 15 and 17 are shown in figure 1b,c.

Figure 2 shows a planar projection of the trajectories (X(0, t), Y(0, t)) and the tangent angle θ :=
arctan(dY/dX(s = 0)) (in degrees) of those trajectories, of cells swimming over backsteps of varying
height. The derivative dY/dX is calculated numerically by sampling the trajectory at the temporal
midpoint of each beat-cycle and taking centred differences. Colour indicates the trajectory over the
backstep of the height in figure 2a,c,e with green denoting h = 0 and red denoting h = 0.5. Simulations
were performed over backsteps of height h = 0.05, 0.1, . . . , 0.5 and are displayed up to the time at which
X(0, t) ≥ 1.

The results in figure 2a,c,e suggest that the backstep affects swimmers at different sperm numbers
differently, producing a range of scattering angles. However, it is important in these results to factor out
the effects of the strip from the backstep. Taking the (lightest) green trajectory, representing a strip, as a
baseline comparison, it is evident that for all sperm numbers the hydrodynamic effect of the backstep is
to deflect the swimmer downwards relative to a strip trajectory. Figure 2b,d,f reveals that this downward
deflection is not smooth, rather there is a sharp bump at x = 0 where the head initially passes over the
backstep, and a further bump at around x = 0.3 where the effect of the step itself becomes subleading
relative to boundary interactions between the head and the lower wall.

Simulations were also performed comparing the effect of the backstep to a ‘cliff’ geometry, with the
lower portion of the backstep missing (data submitted [43]). After passing the backstep, cells swam
straight as though in an infinite fluid, suggesting that the majority of the angular deflection occurs due
to interaction with the lower boundary; boundary forces change suddenly over a step jump, and the
cell acts as though it were above a higher boundary. Additionally, simulations over a strip at Sp = 13 for
different starting heights (data submitted [43]) showed that attraction to the surface initially increased
and then decreased as height above the surface increased, which suggests that hydrodynamic boundary
attraction is responsible for the behaviour in figure 2a,b.

Figure 3 shows the effect of varying sperm number over finer increments for backstep height
zero (a,b) and h = 0.2L (c,d), with results summarized in figure 4a. Simulations were performed for
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Figure 2. Projected trajectories (X(0, t), Y(0, t)) and angles of trajectories θ := arctan dY/dX(s= 0) for different sperm numbers as a
function of changing the height of the backstep. (a,b) Sp= 13, (c,d) Sp= 15, (e,f ) Sp= 17. Colour corresponds to the backstep heights
shown in (a,c,e).

Sp = 13, 13.5, . . . , 17 over both a strip geometry and a backstep of height h = 0.2L, so that the sperm cells
initially start 0.2L above the surface, and then increase to around 0.4L after the backstep. In figure 3a–d,
colour is matched to increasing sperm number, so that light green corresponds to Sp = 13 and red to
Sp = 17. Figure 3a,b shows for a sperm swimming over a strip, the boundary repels the swimmer more
at this close distance as sperm number is increased. This effect is to be expected because increasing the
sperm number increases the relative strength of viscous to elastic forces, thus the effect of the boundary
is likely to be enhanced as Sp increases. The initial dip in figure 3b is an artefact of the numerical soft
start of our system, as the waveform emerges from a straight initial state.

Figure 3c,d shows a larger range of scattering angles than for fixed sperm number over various
backstep heights, of the order of 10◦. Furthermore, additional simulations (data submitted [43]) showed
that this hydrodynamic deflection was not sensitive to the phase of the waveform as it passed over the
backstep, in contrast to scattering due to contact forces (R. Goldstein 2014, personal communication).
Figure 4a shows the effects of changing sperm number, giving the deflection for a strip, a backstep, and
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Figure 3. Projected trajectories (X(0, t), Y(0, t)) and angles of trajectories θ := arctan dY/dX(s= 0) for varying sperm number over
fixed geometry. Panels (a,b) show trajectories and angles with a ‘strip’, i.e. zero backstep height, (c,d) with backstep height 0.2L. Colour is
matched to sperm number, light green denoting Sp= 13 and red denoting Sp= 17, intermediate colours moving in increments of 0.5.
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Figure 4. The effect of the backstep on scattering, showing ‘final’ deflection at x = 1.0L, for (a) strip and backstep (h= 0.2L) and a
range of sperm numbers, (b) Sp= 13, 15, 17 and a range of backstep heights. Colour in (b) denotes sperm number as indicated by labels
on the right-hand side.

their difference. A slight increase in the magnitude of this difference is observed as sperm number is
increased, owing to increased hydrodynamic interaction mediated by viscosity.

Figure 4b summarizes the effect of varying both backstep height and sperm number simultaneously,
quantified by the ‘final deflection angle’ θd, i.e. the value of θ for which X = L. At Sp = 13 deflection is
always negative, whereas for Sp = 15, 17 deflection is always positive. The relationship between θd and
h is non-monotone at the lower sperm number but is monotonic in the higher range. At Sp = 13, the
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Figure 5. Boundary-induced waveform asymmetry, increasing with sperm number. (a) Symmetric waveforms of sperm flagella
swimming in infinite fluid, and asymmetric forms over the boundary strip for Sp= 13 and Sp= 17. (b) Flagellar asymmetry (defined
in text) as a function of arclength, for a cell swimming over a strip along the flagellum. Colour in (b) is matched to sperm number, light
green denoting Sp= 13 and red denoting Sp= 17, intermediate colours moving in increments of 0.5. (c) Asymmetry at s= 1 at the
endpoint of the flagellum, as a function of sperm number Sp, showing an increase in asymmetry with sperm number for the strip (red),
and negligible asymmetry for the infinite fluid case (blue).

deflection angle initially increases in magnitude, then decreases after the maximum at around h = 0.15L.
This riser height corresponds to a distance of 0.35L between the cell and the boundary, which is where
boundary attraction is strongest at this sperm number. For Sp = 15, 17, the deflection angle decreases
monotonically with backstep height in the range we have considered. This effect probably occurs because
at these sperm numbers the strip causes the cell to pitch away. However in all cases, increasing backstep
height to 0.5L results in a plateau.

The effects of the backstep on the waveform are summarized in figure 5, which show the waveform
shape with and without the boundary, and quantitative measures of the asymmetry of the waveform.
Recall that the flagellar actuation is symmetric; waveform asymmetry is produced due to increased
hydrodynamic drag arising from proximity to the wall [44] affecting closer portions of the flagellum
more than further portions. Figure 5a shows waveforms at sperm number Sp = 13, 17 in infinite
fluid as well as over a strip. In infinite fluid, the waveform is symmetrical for all sperm numbers
considered, while the presence of a boundary gives rise to a waveform asymmetry that increases
with Sp.

‘Asymmetry’ is quantified by sampling the flagellar wave every 41 numerical time steps (relative
to a beat cycle of 200 time steps), projecting into the body frame and calculating the average
lateral position relative to the body frame centreline over a fixed period, in this case beats 82–90.
This quantity is plotted as a function of arclength in figure 5b; its distal (s = 1) value is plotted
in figure 5c.
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Figure 5b plots asymmetry versus arclength for sperm numbers in the range 13–17, the effect being

largest at higher sperm number. The asymmetry at the tip of the flagellum for a strip versus no boundary
is shown in figure 5c as a function of sperm number.

5. Discussion
A numerical method for simulating the swimming of monoflagellate cells over geometric features was
presented and applied to model sperm interacting with microchannel backstep feature. The scheme
incorporates non-local hydrodynamics with large-amplitude active filament mechanics. We believe this
method to be the simplest generalization of previous work that is capable of taking into account non-
local hydrodynamic interaction geometrical features. The linearity of the Stokes flow equations entails
that the largest error in our method arises from the LGL slender body theory, which is at worst on the
order of the square root of the slenderness ratio. Accuracy of the method of regularized stokeslets is on
the order of the regularization parameter near the boundary, and its square far from the boundary where
the swimmer is located. Future work may consider boundary integral modelling of the flagellum also;
however, we do not expect that this would qualitatively change swimmer trajectories.

The interaction between the cell and the lower boundary involves the competing effects of asymmetric
hydrodynamic forces leading to waveform asymmetry and boundary repulsion, and the pitching
behaviour associated with swimmer/boundary interaction [26]. At lower sperm number and at greater
distances from the boundary, waveform asymmetry is smaller, and the cell pitches towards the boundary.
At higher sperm number and closer distances from the boundary, waveform asymmetry is larger and the
cell pitches away. The effect of the backstep is a sudden drop in the lower boundary, which changes
the relative importance of these effects; waveform asymmetry is reduced relative to hydrodynamic
attraction, and the net result is a deflection towards the lower boundary after the backstep relative to
the expected trajectory over a strip (figure 2).

Analysing sperm scattering over a backstep, we found that hydrodynamic effects may be comparable
in magnitude in the relatively high viscosity range considered to the contact interactions found
experimentally by Kantsler et al. [2]. A transition is predicted from scattering towards the backstep at
lower viscosity to scattering away from the backstep at higher viscosity. Qualitatively this behaviour is
similar to the temperature-related transition in Kantsler et al.’s observations (with lower temperature
corresponding to higher viscosity); the correspondence is not exact however, with Kantsler et al.’s
observations being carried out with bull sperm in low viscosity buffer, and with cells exhibiting very
close interaction with the boundary, compared with our longer range interactions and sperm number
representative of human cells in mucus analogue that we chose to focus on in this study. Clearly
integrating both surface interactions and hydrodynamics will be necessary to develop a comprehensive
model, particularly at higher sperm number/viscosity.

The role of hydrodynamic interactions in determining surface attraction and more complex effects
associated with boundary features continues to receive significant theoretical attention and is stimulating
novel mathematical approaches [28–31,45]. Viscous interactions of course become increasingly important
in high viscosity fluids such as mucus and laboratory analogues. Kantsler et al. [2] noted the need to take
both elastic and steric interactions into account; modelling very short length scale or contact interactions,
with either glass, epithelium, cumulus or even ciliated surfaces, and their effect on the flagellar wave,
is a topic of importance, though numerical simulation requires taking account of the rapidly varying
hydrodynamic force and electrostatic interactions as the swimmer approaches these boundaries. We
hope that the numerically implicit method, potentially also combined with adaptive refinement of the
boundary element meshes, will enable accurately resolved simulation of sperm-like swimmers in very
near surface-contact in future work. Other valuable methods for modelling three-dimensional sperm
motility and elastic-fluid interaction include models based exclusively on regularized stokeslets [46,47]
and techniques such as stochastic rotation dynamics [48].

While we have used our model to examine a swimmer representative of human sperm, the approach
is applicable to a much wider range of eukaryotic cells, including the sperm of other species and,
with a slight reworking of the head boundary condition, biflagellate organisms such as the green alga
Chlamydomonas. These species are of particular interest as they have been used as models for flagellar
synchronization [49] and are relevant to energy-producing bioreactors [50]. For these systems, the model
may also be extended to include a non-local hydrodynamic contribution from other swimmers. Larger
swimming organisms, such as Caenorhabditis elegans, have also been shown to be significantly affected by
interactions with a structured microenvironment [51,52].
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Another application is the design and optimization of biomimetic artificial microswimmers (e.g. [53,

54]). Because the model includes internal periodic actuation via prescribed bending moments, it might
be used to optimize actuation for various purposes such as forward progress, subject to constraints such
as fixed mechanical energy. Furthermore, the inclusion of geometrical boundary features and the use of
sperm number allow such optimization to be tailored to specific environments. The elastohydrodynamic
model can additionally be used to solve the inverse problem of estimating internal moments from
observed flagellar data, potentially allowing us to examine how nature has optimized swimming in
various environments and informing truly biomimetic design.

Despite the linearity of the Stokes flow equations, the interaction of sperm with their
microenvironment presents a subtle nonlinear mechanics problem. Sperm scattering depends
nonlinearly on the ratio between viscous and elastic forces, with even a simple backstep feature
producing attractive or repulsive scattering of cells depending on parameter values. These scattering
effects may be valuable in sorting cells in microdevices, in addition to giving insight into the complexity
of how sperm interact with their microenvironment. The combination of mechanical models and
experiment will provide the best way to understand and exploit these effects for biomedical applications.
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Appendix A. Calculation of hydrodynamic terms
Following non-dimensionalization, the hydrodynamic model yields the following equation for the
dimensionless fluid velocity away from the flagellum:

Sp4U(x) = ξ⊥
μ

(∫ 1

0
S(x, X(s, t)) · fvis(s, t) ds +

∫∫
H(t)

S(x, Y) · φH(Y, t) dSY

+
∫∫

W
Sε(x, Y) · φW(Y, t) dSY

)
. (A 1)

The non-local contribution to the velocity V on the slender body is similarly given by

Sp4V(X(s0, t)) = ξ⊥
μ

(∫
|s−s0|>q

S(X(s0, t), X(s, t)) · fvis(s, t) ds

+
∫∫

H(t)
S(X(s0, t), Y) · φH(Y, t) dSY

+
∫∫

W
Sε(X(s0, t), Y) · φW(Y, t) dSY

)
. (A 2)

At each step of the iterative solution to the nonlinear problem, the collocation code solves the integral
equation

Sp4

⎛
⎜⎝ Xt

UH + ΩH ∧ (YH − Xc)
0

⎞
⎟⎠=

⎛
⎜⎝−(I + (γ − 1)ŝŝ) · fvis + Sp4V[fvis, φH, φW](X)

Sp4U[fvis, φH, φW](YH)
Sp4U[fvis, φH, φW](YW)

⎞
⎟⎠, (A 3)

for the unknown hydrodynamic force per unit length fvis and unknown stresses φH, φW.
The collocation code discretizes the flagellum with 160 elements, with the non-local contribution to the

LGL slender body theory computed by the midpoint rule with constant force per unit length over each
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element. The force per unit area on the ellipsoidal head of 32 mesh elements is calculated using routines
from BEMLIB [32] with 20 point Gauss–Legendre quadrature as described in detail in the appendix. The
wall boundary is discretized into elements of width 0.075L, using regularized stokeslets with ε = 0.01L.
Integration is performed with repeated Gauss–Legendre quadrature with 4 × 4 points per element for
the near-singular wall integrals, and a 2 × 2 point rule elsewhere.

To implement the boundary conditions (3.12) and (3.13), Gadêlha et al. [16] approximated the force
and moment on the head by a grand resistance matrix [32] multiplying the velocity and angular velocity.
In dimensional variables, the grand resistance matrix expresses the force and moment on a moving rigid
body as (

F
M

)
=R ·

(
U
Ω

)
, where R=

(
RF

RM

)
.

The blocks RF and RM are 3 × 6 matrices yielding the force and moment terms, respectively. For
example, a sphere of radius a in the absence of hydrodynamic interactions would have dimensionless
grand resistance matrix given by

RF = (−6πμaI 0) and RM = (0 − 8πμa3I). (A 4)

This approach is convenient because the linearity of the relationship means that the head velocity UH

and angular velocity ΩH can be dealt within the implicit formulation as unknowns in the linear algebra
problem. To generalize to a non-local hydrodynamic model taking into account the effect of the flagellum
and nearby boundary, the force and moment will be decomposed as consisting of part which is linear in
velocity and angular velocity via resistance matrices and a remaining contribution from the flagellum.
The matrices RF and RM are determined via the boundary integral method, taking into account the
potentially highly significant effect of the wall feature, but not the subleading effect of the flagellum,
which is accounted for as a correction, as described below.

Elastic scalings are used to non-dimensionalize all forces and moments, i.e. E/L2, E/L for FH and
MH, respectively, with E/L3 for force per unit length fvis and E/L4 for stress φH, φW. The additional
corrections 
FH and 
MH referred to in equation (3.16) are determined as part of the iterative process

by performing a slender body/boundary integral calculation of f̃vis, φ̃
H

and φ̃
W

with the most recent
approximation to X̃ available, yielding in dimensionless variables

F̃
H =

∫∫
H(t)

φ̃
H

dS and M̃
H =

∫∫
H(t)

(Ỹ − X̃
c
) ∧ φ̃

H
dSY, (A 5)

where X̃
c

is the head centroid. Using also the most recent iterates for Ũ
H

and Ω̃
H

, the corrections are then
given by


FH = F̃
H − Sp4

(
μ

ξ⊥

)
RF ·

(
Ũ

H

Ω̃
H

)
and 
MH = M̃

H − Sp4
(

μ

ξ⊥

)
RM ·

(
Ũ

H

Ω̃
H

)
. (A 6)

These corrections appear on the right-hand side of the linear system.

References
1. Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown

J. 2012 Human spermatozoa migration in
microchannels reveals boundary-following
navigation. Proc. Natl Acad. Sci. USA 109,
8007–8010. (doi:10.1073/pnas.1202934109)

2. Kantsler V, Dunkel J, Polin M, Goldstein RE. 2013
Ciliary contact interactions dominate surface
scattering of swimming eukaryotes. Proc. Natl Acad.
Sci. USA 110, 1187–1192.
(doi:10.1073/pnas.1210548110)

3. Gaffney EA, Gadêlha H, Smith DJ, Blake JR,
Kirkman-Brown JC. 2011 Mammalian sperm
motility: observation and theory. Annu. Rev. Fluid
Mech. 43, 501–528.
(doi:10.1146/annurev-fluid-121108-145442)

4. Machin KE. 1958 Wave propagation along flagella. J.
Exp. Biol. 35, 796–806.

5. Satir P. 1965 Studies on cilia: II. Examination of the
distal region of the ciliary shaft and the role of the
filaments in motility. J. Cell Biol. 26, 805–834.
(doi:10.1083/jcb.26.3.805)

6. Brokaw CJ. 1971 Bend propagation by a sliding
filament model for flagella. J. Exp. Biol. 55, 289–304.

7. Brokaw CJ. 1972 Computer simulation of flagellar
movement: I. Demonstration of stable bend
propagation and bend initiation by the Sliding
Filament Model. Biophys. J. 12, 564–586.
(doi:10.1016/S0006-3495(72)86104-6)

8. Brokaw CJ. 2009 Thinking about flagellar
oscillation. Cell Motil. Cytoskel. 66, 425–436.
(doi:10.1002/cm.20313)

9. Lindemann CB, Lesich KA. 2010 Flagellar and ciliary
beating: the proven and the possible. J. Cell Sci. 123,
519–528. (doi:10.1242/jcs.051326)

10. Woolley DM. 2010 Flagellar oscillation: a
commentary on proposed mechanisms. Biol. Rev.
85, 453–470. (doi:10.1111/j.1469-185X.2009.00110.x)

11. Riedel-Kruse IH, Hilfinger A, Howard J, Jülicher F.
2007 Howmolecular motors shape the flagellar
beat. HFSP J. 1, 192–208. (doi:10.2976/1.2773861)

12. Lindemann CB. 1994 A ‘Geometric clutch’
hypothesis to explain oscillations of the axoneme of
cilia and flagella. J. Theor. Biol. 168, 175–190.
(doi:10.1006/jtbi.1994.1097)

13. Hines M, Blum JJ. 1978 Bend propagation in flagella.
I. Derivation of equations of motion and their
simulation. Biophys. J. 23, 41–57.
(doi:10.1016/S0006-3495(78)85431-9)

14. Camalet S, Jülicher F. 2000 Generic aspects of
axonemal beating. New J. Phys. 2, 24.
(doi:10.1088/1367-2630/2/1/324)

 on November 10, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1073/pnas.1202934109
http://dx.doi.org/doi:10.1073/pnas.1210548110
http://dx.doi.org/doi:10.1146/annurev-fluid-121108-145442
http://dx.doi.org/doi:10.1083/jcb.26.3.805
http://dx.doi.org/doi:10.1016/S0006-3495(72)86104-6
http://dx.doi.org/doi:10.1002/cm.20313
http://dx.doi.org/doi:10.1242/jcs.051326
http://dx.doi.org/doi:10.1111/j.1469-185X.2009.00110.x
http://dx.doi.org/doi:10.2976/1.2773861
http://dx.doi.org/doi:10.1006/jtbi.1994.1097
http://dx.doi.org/doi:10.1016/S0006-3495(78)85431-9
http://dx.doi.org/doi:10.1088/1367-2630/2/1/324
http://rsos.royalsocietypublishing.org/


14

rsos.royalsocietypublishing.org
R.Soc.opensci.2:140475

................................................
15. Brokaw CJ. 2002 Computer simulation of flagellar

movement VIII: coordination of dynein by local
curvature control can generate helical bending
waves. Cell Motil. Cytoskel. 53, 103–124.
(doi:10.1002/cm.10067)

16. Gadêlha H, Gaffney EA, Smith DJ, Kirkman-Brown
JC. 2010 Nonlinear instability in flagellar dynamics:
a novel modulation mechanism in sperm
migration? J. R. Soc. Interface 7, 1689–1697.
(doi:10.1098/rsif.2010.0136)

17. Tornberg AK, Shelley MJ. 2004 Simulating the
dynamics and interactions of flexible fibers in
Stokes flows. J. Comput. Phys. 196, 8–40.
(doi:10.1016/j.jcp.2003.10.017)

18. Gueron S, Liron N. 1992 Ciliary motion modeling,
and dynamic multicilia interactions. Biophys. J. 63,
1045–1058. (doi:10.1016/S0006-3495(92)81683-1)

19. Liron N. 2001 The LGL (Lighthill–Gueron–Liron)
Theorem—historical perspective and critique.
Math. Meth. App. Sci. 24, 1533–1540.
(doi:10.1002/mma.217)

20. Lighthill J. 1976 Flagellar hydrodynamics. SIAM Rev.
18, 161–230. (doi:10.1137/1018040)

21. Mitran SM. 2007 Metachronal wave formation in a
model of pulmonary cilia. Comput. Struct. 85,
763–774. (doi:10.1016/j.compstruc.2007.01.015)

22. Olson SD, Lim S, Cortez R. 2013 Modeling the
dynamics of an elastic rod with intrinsic curvature
and twist using a regularized Stokes formulation. J.
Comput. Phys. 238, 169–187.
(doi:10.1016/j.jcp.2012.12.026)

23. Rothschild L. 1963 Non-random distribution of bull
spermatozoa in a drop of sperm suspension. Nature
198, 1221–1222. (doi:10.1038/1981221a0)

24. Winet H, Bernstein GS, Head J. 1984 Observations
on the response of human spermatozoa to gravity,
boundaries and fluid shear. J. Reprod. Fertil. 70,
511–523. (doi:10.1530/jrf.0.0700511)

25. Fauci LJ, McDonald A. 1995 Spermmotility in the
presence of boundaries. BMath. Biol. 57,
679–699.

26. Smith DJ, Gaffney EA, Blake JR, Kirkman-Brown JC.
2009 Human sperm accumulation near surfaces: a
simulation study. J. Fluid Mech. 621, 289–320.
(doi:10.1017/S0022112008004953)

27. Elgeti J, Kaupp UB, Gompper G. 2010 Hydrodynamics
of sperm cells near surfaces. Biophys. J. 99,
1018–1026. (doi:10.1016/j.bpj.2010.05.015)

28. Crowdy D, Samson O. 2011 Hydrodynamic bound
states of a low-Reynolds-number swimmer near a

gap in a wall. J. Fluid Mech. 667, 309–335.
(doi:10.1017/S0022112010004465)

29. Davis AMJ, Crowdy DG. 2012 Stresslet asymptotics
for a treadmilling swimmer near a two-dimensional
corner: hydrodynamic bound states. Proc. R. Soc. A
468, 3765–3783. (doi:10.1098/rspa.2012.0237)

30. Crowdy DG, Davis AMJ. 2013 Stokes flow
singularities in a two-dimensional channel: a novel
transform approach with application to
microswimming. Proc. R. Soc. A 469, 20130198.
(doi:10.1098/rspa.2013.0198)

31. Lopez D, Lauga E. 2014 Dynamics of swimming
bacteria at complex interfaces. Phys. Fluids 26,
071902. (doi:10.1063/1.4887255)

32. Pozrikidis C. 2010 A practical guide to boundary
element methods with the software library BEMLIB.
Boca Raton, FL: CRC Press.

33. Cortez R, Fauci L, Medovikov A. 2005 The method of
regularized Stokeslets in three dimensions: analysis,
validation, and application to helical swimming.
Phys. Fluids 17, 031504. (doi:10.1063/1.1830486)

34. Smith DJ. 2009 A boundary element regularized
Stokeslet method applied to cilia- and
flagella-driven flow. Proc. R. Soc. A 465, 3605–3626.
(doi:10.1098/rspa.2009.0295)

35. Cortez R. 2001 The method of regularized Stokeslets.
SIAM J. Sci. Comput. 23, 1204–1225.
(doi:10.1137/S106482750038146X)

36. Gray J, Hancock GJ. 1955 The propulsion of
sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814.

37. Pozrikidis C. 1992 Boundary integral and singularity
methods for linearized viscous flow. Cambridge, UK:
Cambridge University Press.

38. Gueron S, Levit-Gurevich K. 2001 A
three–dimensional model for ciliary motion based
on the internal 9 + 2 structure. Proc. R. Soc. Lond.
B 268, 599–607. (doi:10.1098/rspb.2000.1396)

39. Brokaw CJ. 2001 Simulating the effects of fluid
viscosity on the behaviour of sperm flagella.Math.
Meth. Appl. Sci. 24, 1351–1365.
(doi:10.1002/mma.184)

40. Goldstein RE, Powers TR, Wiggins CH. 1998 Viscous
nonlinear dynamics of twist and writhe. Phys. Rev.
Lett. 80, 5232. (doi:10.1103/PhysRevLett.80.5232)

41. Fornberg B. 1988 Generation of finite difference
formulas on arbitrarily spaced grids.Math. Comput.
51, 699–706.
(doi:10.1090/S0025-5718-1988-0935077-0)

42. Smith DJ, Gaffney EA, Gadêlha H, Kapur N,
Kirkman-Brown JC. 2009 Bend propagation in the

flagella of migrating human sperm, and its
modulation by viscosity. Cell Motil Cytoskel. 66,
220–236. (doi:10.1002/cm.20345)

43. Montenegro-Johnson TD, Gadêlha H, Smith DJ. 2015
Data from: Spermatozoa scattering by a
microchannel feature: an elastohydrodynamic
model. Dryad Digital Repository.
(doi:10.5061/dryad.4767b )

44. Katz DF, Blake JR, Paveri-Fontana SL. 1975 On the
movement of slender bodies near plane boundaries
at low Reynolds number. J. Fluid Mech. 72, 529–540.
(doi:10.1017/S0022112075003126)

45. Spagnolie SE, Lauga E. 2012 Hydrodynamics of
self-propulsion near a boundary: predictions and
accuracy of far-field approximations. J. Fluid Mech.
700, 105–147. (doi:10.1017/jfm.2012.101)

46. Nguyen H, Ortiz R, Cortez R, Fauci L. 2011 The action
of waving cylindrical rings in a viscous fluid. J. Fluid
Mech. 671, 574–586.
(doi:10.1017/S0022112010006075)

47. Cortez R, Nicholas M. 2012 Slender body theory for
Stokes flows with regularized forces. Comms. Appl.
Math. Comput. Sci. 7, 33–62.
(doi:10.2140/camcos.2012.7.33)

48. Elgeti J, Gompper G. 2013 Wall accumulation of
self-propelled spheres. Eur. Phys. Lett. 101, 48003.
(doi:10.1209/0295-5075/101/48003)

49. Wan KY, Leptos KC, Goldstein RE. 2014 Lag, lock,
sync, slip: the many ‘phases’ of coupled flagella. J.
R. Soc. Interface 11, 20131160.
(doi:10.1098/rsif.2013.1160)

50. Bees MA, Croze OA. 2014 Mathematics for
streamlined biofuel production from unicellular
algae. Biofuels 5, 53–65. (doi:10.4155/bfs.13.66)

51. Park S, Hwang H, Nam SW, Martinez F, Austin RH,
Ryu WS. 2008 Enhanced Caenorhabditis elegans
locomotion in a structured microfluidic
environment. PLoS ONE 3, e2550.
(doi:10.1371/journal.pone.0002550)

52. Majmudar T, Keaveny EE, Zhang J, Shelley MJ. 2012
Experiments and theory of undulatory locomotion
in a simple structured medium. J. R. Soc. Interface 9,
1809–1823. (doi:10.1098/rsif.2011.0856)

53. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone
HA, Bibette J. 2005 Microscopic artificial swimmers.
Nature 437, 862–865. (doi:10.1038/nature04090)

54. Espinosa-Garcia J, Lauga E, Zenit R. 2013 Fluid
elasticity increases the locomotion of flexible
swimmers. Phys. Fluids 25, 031701.
(doi:10.1063/1.4795166)

 on November 10, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1002/cm.10067
http://dx.doi.org/doi:10.1098/rsif.2010.0136
http://dx.doi.org/doi:10.1016/j.jcp.2003.10.017
http://dx.doi.org/doi:10.1016/S0006-3495(92)81683-1
http://dx.doi.org/doi:10.1002/mma.217
http://dx.doi.org/doi:10.1137/1018040
http://dx.doi.org/doi:10.1016/j.compstruc.2007.01.015
http://dx.doi.org/doi:10.1016/j.jcp.2012.12.026
http://dx.doi.org/doi:10.1038/1981221a0
http://dx.doi.org/doi:10.1530/jrf.0.0700511
http://dx.doi.org/doi:10.1017/S0022112008004953
http://dx.doi.org/doi:10.1016/j.bpj.2010.05.015
http://dx.doi.org/doi:10.1017/S0022112010004465
http://dx.doi.org/doi:10.1098/rspa.2012.0237
http://dx.doi.org/doi:10.1098/rspa.2013.0198
http://dx.doi.org/doi:10.1063/1.4887255
http://dx.doi.org/doi:10.1063/1.1830486
http://dx.doi.org/doi:10.1098/rspa.2009.0295
http://dx.doi.org/doi:10.1137/S106482750038146X
http://dx.doi.org/doi:10.1098/rspb.2000.1396
http://dx.doi.org/doi:10.1002/mma.184
http://dx.doi.org/doi:10.1103/PhysRevLett.80.5232
http://dx.doi.org/doi:10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/doi:10.1002/cm.20345
http://dx.doi.org/doi:10.5061/dryad.4767b
http://dx.doi.org/doi:10.1017/S0022112075003126
http://dx.doi.org/doi:10.1017/jfm.2012.101
http://dx.doi.org/doi:10.1017/S0022112010006075
http://dx.doi.org/doi:10.2140/camcos.2012.7.33
http://dx.doi.org/doi:10.1209/0295-5075/101/48003
http://dx.doi.org/doi:10.1098/rsif.2013.1160
http://dx.doi.org/doi:10.4155/bfs.13.66
http://dx.doi.org/doi:10.1371/journal.pone.0002550
http://dx.doi.org/doi:10.1098/rsif.2011.0856
http://dx.doi.org/doi:10.1038/nature04090
http://dx.doi.org/doi:10.1063/1.4795166
http://rsos.royalsocietypublishing.org/

